The fire salamander ( Salamandra salamandra) is a common species of salamander found in Europe.
It is black with yellow spots or stripes to a varying degree; some specimens can be nearly completely black while on others the yellow is dominant. Shades of red and orange may sometimes appear, either replacing or mixing with the yellow according to subspecies. This bright coloration is highly conspicuous and acts to deter predators by honest signalling of its toxicity (aposematism). Fire salamanders can have a very long lifespan; one specimen lived for more than 50 years in Museum Koenig, a German natural history museum.
Despite its wide distribution and abundance, it is classified as Vulnerable on the IUCN Red List due to its susceptibility to infection by the introduced fungus Batrachochytrium salamandrivorans, which has caused severe declines in fire salamanders in parts of its range.
Some former subspecies have been lately recognized as species for genetic reasons.
The scientific article titled "Water, Stream Morphology and Landscape: Complex Habitat Determinants for the Fire Salamander Salamandra salamandra" explored the factors influencing the distribution of the fire salamander, a semiaquatic amphibian species, in northern Italy. The study aimed to understand the relationship between environmental features and species distribution, essential for effective habitat conservation.
Researchers evaluated three main factors: stream morphology, biotic features of water, and the composition of the surrounding landscape near wetlands. They collected data from 132 localities over four years and used an information-theoretic approach to build species distribution models. Variance partitioning was then employed to assess the relative importance of environmental variables.
The findings revealed that the distribution of fire salamander larvae was associated with specific environmental conditions. They were found in heterogeneous and shallow streams with scarce periphyton (a type of algae) and rich macrobenthos (aquatic invertebrates), characteristic of oligotrophic water. Additionally, the presence of woodlands in the surrounding landscape played a crucial role in the species' distribution.
The analysis revealed significant genetic diversity variation across the study area, with lower diversity in eastern populations near the range limit and higher diversity in western and central populations. The study identified strong genetic structure, as populations from the Iberian Central System (ICS) and the Montes de Toledo Range (MTR) formed distinct genetic groups. Physical isolation, represented by landscape resistance, played a substantial role in genetic differentiation between populations across all spatial extents. Different types of landscape resistance, such as climate-based and landcover-based, provided the best model fits in different regions. The researchers proposed a scenario where gene flow between two subspecies, S. s. bejarae and S. s. almanzoris, was restricted by ecological isolation associated with sharp transitions in precipitation seasonality. However, gene flow between populations with intermediate levels of precipitation seasonality was less restricted. The results provided evidence for ongoing environmental adaptation, leading to the maintenance of distinct ecotypes and evolutionary units.
/ref>
The diet of the fire salamander consists of various , , , , earthworms and , but they also occasionally eat and young . In captivity, they eat crickets, , and silkworm larvae. Small prey will be caught within the range of the vomerine teeth or by the posterior half of the tongue, to which the prey adheres. It weighs about 40 grams. Compared to other salamanders in the region like Luschan's salamander, the fire salamander has been shown to be larger and appears to have a more solid pectoral girdle. Additionally, it has a longer pectoral girdle than Luschan's salamander. The fire salamander is one of Europe's largest salamanders and can grow to be long.
The results revealed significant differences in foraging behavior between cave and stream larvae. The cave larvae exhibited a more active foraging strategy, especially in darkness and in the absence of prey, suggesting local adaptations to the challenging cave environment with limited food resources. Stream larvae, on the other hand, preferred using peripheral sectors of the test arena, indicating a preference for sit-and-wait behavior, which is advantageous in the presence of detectable and active prey.
The study demonstrated that fire salamander larvae are highly plastic in their foraging behavior. They adjusted their activity levels and movement patterns in response to changes in light conditions, prey availability, and food deprivation. The plastic responses observed were beneficial for increasing encounter rates with prey and optimizing energy utilization in resource-scarce environments. The study revealed an interplay between phenotypic plasticity and local adaptation in shaping the foraging behavior of fire salamander larvae. While plasticity appears to be dominant in the early stages of colonization and adaptation to new environments, local adaptations may also contribute to behavioral differences between cave and stream populations.Manenti, Raoul, et al. "Foraging plasticity favours adaptation to new habitats in fire salamanders."
In captivity, females may retain sperm long-term and use the stored sperm later to produce another clutch. This behavior has not been observed in the wild, likely due to the ability to obtain fresh sperm and the degradation of stored sperm.
The experiment explored environmental features in determining larval distribution inside caves. Fire salamander larvae were observed to choose caves with specific characteristics, such as stable water presence, ease of access, and the presence of rich macrobenthos communities. Larval development in underground springs and natural caves was found to be slower compared to epigean environments, possibly influenced by factors such as temperature and food availability. Furthermore, the lack of light in caves influenced the predation behavior of larvae, with cave populations showing higher adaptability in capturing prey. Cave environments presented unique challenges for fire salamanders, including food scarcity and the occurrence of cannibalism, particularly in resource-poor habitats. However, the study revealed that fire salamanders exhibited strong phenotypic plasticity, which allowed them to adapt and survive in these extreme underground conditions.
The research emphasizes the importance of local adaptations and phenotypic plasticity in the successful colonization of caves by fire salamanders. It also highlights the need for further genetic studies to understand the differentiation between cave and stream populations and the mechanisms driving successful cave exploitation. Despite challenges posed by large urodele genomes, future genome scan and transcriptomic approaches may provide valuable insights into the genetic processes involved in cave adaptation.
/ref>
A 2002 study focused on investigating the variability of toxic alkaloids in the skin secretion of the European fire salamander. The chemical defense mechanisms of the salamander provides valuable insights into the chemical composition of skin secretions in amphibians. The two major alkaloids of focus were, samandarine and samandarone. Using gas chromatography/mass spectrometry, the researchers analyzed individual specimens from two populations of fire salamanders and observed a high degree of intraspecific variability in the ratio of samandarine to samandarone in the skin secretion. Some individuals had a higher concentration of samandarone, while others exhibited equal levels of both alkaloids.
Internal organs contained either no or only small amounts of the alkaloids, and the ratio of alkaloids in the organs differed from that in the skin. Particularly noteworthy was the finding that the larvae found in the oviducts of gravid females were entirely free of alkaloids, and their skin lacked the typical granular glands that are present in adult salamanders. Samandarone may be a product of a separate biosynthetic pathway due to its exclusive presence in skin secretions and organ extracts.
Mebs, Dietrich, and Werner Pogoda. "Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra Salamadra terrestris)."
Since its identification in the Netherlands, Bsal has continued to spread across western Europe, and has infected more populations of S. s. terrestris in Belgium and western Germany, with an isolated but contained occurrence in Spain affecting a population of S. s. hispanica. Dramatic declines have been noted in all affected populations, and some may eventually be entirely Local extinction, although at most known sites, fire salamanders persist at low numbers even after disease outbreak, and in one case appear to have recovered. Some localities in the Eifel where fire salamanders were previously known from appear to now be devoid of fire salamanders, suggesting landscape-scale declines that occurred prior to the disease's identification by science. In 2023, the fire salamander was officially moved from 'Least Concern' to 'Vulnerable' on the IUCN Red List, relating to the past and predicted future declines in the species.
== Gallery ==
|
|